Kasvojen tunnistamisen vaikeuksista

Kasvojen tunnistamisen vaikeuksia (prosopagnosia) on tutkittu viime vuosina runsaasti. Kasvava tietoisuus näiden vaikeuksien olemassaolosta on lisännyt myös tiedon tarvetta sekä näitä vaikeuksia kokevien että niitä arvioivien parissa.

Arizpe kumppaneineen (2019) selvitti, kuinka luotettavasti kasvojen tunnistamisen vaikeus on diagnosoitavissa pelkän itsearviointilomakkeen avulla. Omaan kokemukseen perustuva arvio näyttäytyi varsin hyvältä keinolta vaikeuksien arvioinnissa, mutta erotusdiagnostinen luotettavuus saavutettiin ainoastaan yhdistämällä itsearviointi kasvojen tunnistamisen testaukseen.

Murray ja Bate (2019) analysoivat samaa kysymystä ja havaitsivat, että itsearvioinneissa oli merkittävä ero miesten ja naisten vastausten välillä. Hekin kehottivat varovaisuuteen luottaa ainoastaan itsearviointeihin.

Yksi iso kysymys on ollut, missä määrin kyky tunnistaa tuttuja tai oppia erottamaan tuntemattomia kasvoja on muista kohteiden tunnistamisen vaikeuksista erillinen ilmiö ja hahmottamisen vaikeuksien alatyyppi. Tätä kysymystä on lähestytty tuoreeltaan parissakin raportissa.

Barton kumppaneineen (2019) analysoi sekä aivovammasta aiheutuneiden että kehityksellisestä kasvojen tunnistamisen vaikeudesta kärsivien kykyä tunnistaa muunlaisia kohteita käyttäen kolmea tunnettua testiä: Uusi/vanha tunnistusmuistitesti, Cambridge polkupyörän tunnistusmuistitesti ja asiantuntijuuskorjattu automerkkien tunnistustesti.

Heidän johtopäätelmänsä oli hyvin samanlainen kuin mihin Geskin ja Behrmann (2018) laajassa kirjallisuuskatsauksessaan päätyivät. Enemmistöllä (lähes 4/5) kasvojen tunnistamisesta kärsivällä on eriasteisia hankaluuksia myös muissa kohteen tunnistamista ja muistamista vaativissa tehtävissä.

Samaan aikaan pienellä ryhmällä kasvojen tunnistaminen ja erottelu ovat selvästi haastavampia kuin muiden kohteiden tunnistaminen.

Kasvojen tunnistamisen vaikeudet on siten tutkittava omana erityisongelmanaan.�� Bartonin (2019) tutkimuksessa tämä harvinaisempi vain kasvojen tunnistamiseen rajautunut kapea-alainen ongelma ilman laajempaa muiden kohteiden tunnistamisen vaikeutta oli löydettävissä sekä aiheutuneista (aivovaurioperäisistä) että kehityksellisistä vaikeuksista kärsiviltä.

Kuva: Thatcher effect. Kun katsot kahta ylempää kuvaa, et huomaa niissä mitään kummallista. Alemmissa kuvissa oikea näyttää vääristyneeltä. Kyseessä ovat kuitenkin aivan samat kuvat toisin päin. Tämä kummallisuus johtuu siitä, että käsittelemme mielessämme kasvojen eri osia erillisinä havaintokategorioina. Oikeassa yläkuvassa silmät ja suu ovat oikein päin vaikka pää on ylösalaisin. Tämä havaintoilluusio sai nimensä siitä, että sen esittelyssä ensimmäisen kerran käytettiin Englannin pääministeri Margaret Thatcherin kuvaa.

Viitteet

Arizpe, J. M., Saad, E., Douglas, A. O., Germine, L., Wilmer, J. B., & DeGutis, J. M. (2019). Self-reported face recognition is highly valid, but alone is not highly discriminative of prosopagnosia-level performance on objective assessments. Behavior research methods, 1-15.

Barton, J. J., Albonico, A., Susilo, T., Duchaine, B., & Corrow, S. L. (2019). Object recognition in acquired and developmental prosopagnosia. Cognitive Neuropsychology, 1-31.

Geskin, J., & Behrmann, M. (2018). Congenital prosopagnosia without object agnosia? A literature review. Cognitive Neuropsychology, 35(1-2), 4-54.

Murray, E., & Bate, S. (2019). Self-ratings of face recognition ability are influenced by gender but not prosopagnosia severity. Psychological assessment.

Mitä kautta kulkee tie miehen sydämeen? Vakavasta aiheesta hieman kevyemmin.

Mikä mielenkiintoisempaa, mentaalisen rotaation harjoittelu anatomiaopintojen yhteydessä näyttäisi parantavan opintosuorituksia. Anatomia on kuin kolmiulotteinen palapeli, jonka hahmottamisen hallinta paranee sitä harjoittelemalla.

Tuoreessa meta-analyysissaan Langois kumppaneineen (2019) kävi läpi mitä tiedämme lääketieteen opiskelijoiden anatomian oppimisen ja visuo-spatiaalisten taitojen välisistä yhteyksistä. Yhteys on erittäin vahva: kyky hahmottaa mielessään esineitä erilaisista suunnista ja ihmisen anatomian ymmärtämisen taidot korreloivat erittäin vahvasti toistensa kanssa.

Voimmeko tästä siis vetää sellaisen johtopäätöksen, että jos kirurgi saapuu myöhästyneenä sydänleikkausta suorittamaan ja selittää syyksi sen, että oli eksynyt sairaalan käytävillä salia etsiessään, niin potilaalla on syytä huoleen? Ehkei ihan näin suoraan, mutta sen johtopäätöksen voimme luonnollisesti tehdä, että tie miehen sydämeen löytyy parhaiten hyvien visuo-spatiaalisten hahmotustaitojen avulla. Ja niitä taitoja voi harjoitella menestyksekkäästi.

Viitteet

Langlois, J., Bellemare, C., Toulouse, J., & Wells, G. A. (2019). Spatial abilities training in anatomy education: A systematic review. Anatomical sciences education.

Paraneeko hahmottamisen ja matikan taidot, jos eskarit laittaa harjoittelemaan hahmottamista?

Oppimisvalmiuksien harjoittamisesta esikouluiässä on paljon positiivisia kokemuksia. Eskaria on myös perusteltu sillä, että se tasottaisi oppilaiden eroja koulun alkuvaiheessa. Havainnot esikoulun positiivisista vaikutuksista maailmalta tulevat lähinnä lukemisvalmiuksien kehittämisestä. Lapset, joiden kotona on luettu vähemmän hyötyvät merkittävästi esikoulun tuomista virikkeistä. Samanlaista tietoa ei ole siitä, voisiko hahmottamistaitojen harjoittaminen myös parantaa oppimisvalmiuksia, erityisesti matematiikassa.

Luxemburgilainen tutkimusryhmä testasi tätä ajatusta. He jakoivat 125 eskarilaista kahteen ryhmään. Toinen ryhmistä harjoitteli kymmenen viikkoa 20 minuuttia kerrallaan tutkimusta varten rakennettua harjoitusohjelmaa, jossa sisältöinä oli visuo-motoriikan ja hahmottamisen tehtäviä. Harjoittelu toteutettiin eskaripäivän aikana.

Harjoitusohjelma, joka sisälsi sekä tablet-laitteella tehtäviä harjoitteita, että tehtäväkirjan käyttöä (merkitty * -merkillä), sisälsi oheisia tehtäviä:
– Etsi kuvio monimutkaisen kuvion seasta*
– Tangram -palapeli*
– Täydennä kuvio piirtämällä
– Kopio kuvio piirtämällä*
– Etsi samanlaiset kuviot
– Etsi erilainen kuvio
– Jatka kuviosarjaa loogisen säännön mukaan
– Täydennä kuvio mallin mukaiseksi piirtämällä*
– Etsi keskikohta viivasta
– Etsi symmetrisen kuvion keskikohta
– Täydennä piirtämällä symmetrinen kuvio*
– Yhdistä kaikki pisteet piirtämällä
– Yhdistä pisteet piirtämällä mallin mukaisesti*
– Käännä kuvio mallikuvan suuntaiseksi*

Lasten taitoja hahmottamisessa ja matematiikassa mitattiin ennen intervention aloittamista ja heti sen jälkeen yhteensä 15 erilaisen tehtävän avulla. Matemaattiset ja hahmottamisen taidot korreloivat vahvasti keskenään. Harjoittelu paransi selvästi hahmottamisen taitoja, mutta suoraa yhteyttä matemaattisten taitojen kehittymiseen ei hahmotustaitojen kehityksellä todettu.

Tutkimuksen vahvuus oli siinä, että matemaattisia taitoja mitattiin poikkeuksellisen laajasti. Hahku-työryhmä harmittelee kuitenkin sitä, että tutkimuksesta puuttui seuranta. Ajatus, että lyhyt hahmottamisen harjoittelu näyttäytyisi nopeasti myös taidoissa, joita ei harjoitusohjelmassa ole harjoiteltu, on varsin oletettava. Oppimisvalmiuksien harjoittamisessa olennainen tavoite kun on niiden tuottama mahdollinen hyöty myöhemmin kouluiässä. Jäämmekin odottamaan mielenkiinnolla millaisia tuloksia työryhmä saa seuratessaan koehenkilöitään ensimmäiselle luokalle.

Viitteet

Cornu, V., Schiltz, C., Pazouki, T., & Martin, R. (2019). Training early visuo-spatial abilities: A controlled classroom-based intervention study. Applied Developmental Science, 23(1), 1-21.

Pitäisikö ammattiopintoihin liittää pakollisena hahmotustaitojen kurssi?

Tiedämme, että teknis-matemaattisilla aloilla pärjäävät paremmin sellaiset opiskelijat, joilla on hyvät visuo-spatiaalisen hahmottamisen taidot. Tiedämme myös, että matematiikan opinnot peruskouluiläisillä sujuvat paremmin, jos on vahva myös näissä hahmottamisen taidoissa. Yhteys matemaattiseen ongelmanratkaisun ja hahmottamisen välillä ei liity ainoastaan geometriaan tai algebraan, vaan myös sanallisten tehtävien ratkaisemiseen. Oppilaat, jotka pystyvät hyödyntämään mielikuvia kielellisenä esitettyjen tehtävien ongelmanratkaisussaan, onnistuvat ratkaisemaan myös haastavampia tehtäviä paremmin.

Tiedämme myös, että hahmottamisen taitoja voi harjoitella. Hahmottamisen harjoittelu parantaa suorituksia hahmottamista vaativissa tehtävissä kaiken ikäisillä. On siis hyvin perustelua kysyä, pitäisikö hahmottamisen taitojen harjoittamista sisältävä kurssi sisällyttää osaksi erityisesti teknis-matemaattisten alojen koulutusta.

Michigan Tech -oppilaitoksessa on näin toimittu jo pitkään, yli kaksikymmentä vuotta. Aluksi kurssit olivat vapaaehtoisia lisäkursseja. Tulokset kursseista olivat positiivisia, muuta koska kurssin suorittaminen perustui omaan valintaan, ei niille osallistuneiden ja osallistumattomien välillä oli voinut tehdä luotettavaa tieteellistä vertailua.

Vuodesta 2009 asti kurssi on sisällytetty pakollisena osaksi opintoja sellaisille opiskelijoille, joiden hahmotustaidot olivat insinööriopintojen alussa heikot. Veurink ja Sorby (2019) kokosivat nyt yhteen tulokset siitä, oliko kurssista hyötyä opinnoissa suoriutumiseen.

Yhden opintopisteen kurssilla opiskelijat kokoontuivat kerran viikossa 80 minuuttiselle sessiolle työskentelemään hahmotustehtävien pariin. Tehtävät perustuvat Sorbyn ja Wysockin (2012) kokoamaan harjoitusmateriaaliin.

Otoksessa oli mukana lähes 4000 opiskelijaa vuosilta 2009-2014. Jo lähtömittauksessa oli selvä ero naisten ja miesten välillä. Yli nejännes naisista jäi hahmotustaidoissaan alimpaan osaamiskategoriaan, kun miehistä siihen kuului alle yksi kymmenestä.

Seurannassa kävi ilmi, että kurssi paransi heikkojen hahmottajien visuo-spatiaalisia taitoja, mutta myös matemaattisten ja teknisen alojen kurssisuoritukset paranivat ja opintojen loppuunsaattamisosuudet kasvoivat. Jälkimmäinen havainto oli erityisen selkeä naisopiskelijoilla. Tutkijat päätyvätkin suositukseen, että ensimmäisen opintovuoden yhdeksi tavoitteeksi pitäisi ottaa hahmottamiseen liittyvien oppimisvalmiuksien kehittäminen.

Kuva: esimerkkitehtävä lähtötason arvioinnissa käytetystä hahmottamisen taitojen testistä

Viitteet

Sorby, S., and Wysocki, A. (2012). Developing Spatial Thinking. Clifton Park, NY: Delmar Cengage Learning.


Veurink, N. L., & Sorby, S. A. (2019). Longitudinal study of the impact of requiring training for students with initially weak spatial skills. European Journal of Engineering Education, 44(1-2), 153-163.

Kauhukertomus huomaamatta eksymisestä – ei heikkohermoisille

Kuvittele poistuvasi bussista mennäksesi ystäväsi luokse kylään, mutta et tiedäkään, missä hän tarkalleen asuu. Onneksi sinulla on hänen osoitteensa kännykässäsi ja kännykässäsi navigaattoriohjelma. Seuraamalla tarkasti navigaattoria löydät oikean kadun, talon ja rapun. Hieno juttu. Kaveri vaan ei ollut kotona. Meinaat soittaa hänelle, mutta kännykästä loppuukin akku. Kaivat taskujasi ja tajuat pudottaneesi avaimesi. Ehkä sinne bussipysäkille kännykkää kaivaessasi. Osaatko nyt takaisin pysäkille ilman navigaattoria?

Tällaisen tarinan esittivät Brügger kumppaneineen (2019) perusteluksi tutkimukselleen. Heidän ajatuskulkunsa oli, että mitä paremmaksi navigaattoriohjelmat ovat tulleet, sitä vähemmän me seuraamme ympäristöämme, ja kun navigaattoria ei olekaan käytettävissä, eksymme. Emme havainnoineetkaan ympäristöä vaan navigaattoria. Tarvitsemme siis navigaattoriohjelmia, jotka auttaisivat meitä myös havainnoimaan ympäristöämme paremmin.

Tutkimuksessa simuloitiin kyseistä tilannetta rakentamalla neljä erilaista navigaattoriohjelmaa. Koehenkilöt kulkivat reitin pisteestä A pisteeseen B navigaattorin avulla. Ja sen jälkeen heiltä otettiin navigaattori pois ja kehoitettiin menemään takaisin pisteestä B pisteeseen A.

Navigoinnissa on kaksi elementtiä: 1) tiedä missä olet, 2) tiedä mihin suuntaan mennä. Modernit navigaattorit näyttävät suoraan, missä olet ja mihin suuntaan pitäisi mennä. Navigaattori hoitaa siis molemmat asiat, joita sinun tarvitsisi tietää, ettet eksyisi. Varioimalla navigaattoriohjelmassa sitä, miten automaattisesti ohjelma kertoi, missä olet ja mihin suuntaan mennä, he selvittivät, onko tällä vaikutusta reitinmuistamiseen.

Ympäristön havainnointia on kahdenlaista: tavoitteellista ja satunnaista. Käyttäessämme navigaattoria ympäristön havainnointi jää satunnaiseksi. Emme huomaa maamerkkejä, koska keskitymme kännykänruutuun. Emme ajattele kääntymistä vasempaan, vaan tuijotamme, liikkuuko ruudulla piste annettua reittiä pitkin. Tuomalla ohjelmaan tavoitteellisia elemettejä, esimerkiksi muistutuksia maamerkeistä ja sitä, että sijaintimme karttaohjelmassa näkyy vain, kun sitä tietoa itse siltä pyydämme, saattaisivat ohjata tavoitteellisempaan ympäristön havainnointiin.

Tulokset olivat varsin selkeitä. Riippumatta navigaattorin mallista koehenkilöt löysivät helposti pisteestä A pisteeseen B. Takaisin löytäminen olikin hankalampaa. Mitä enemmän navigaattori oli auttanut tietämään missä olet ja tietämään mihin suuntaan mennä, sitä huonommin koehenkilöt löysivät takaisin. Eksyneiden määrä oli todella iso. Onneksi tutkimusavustaja vihkoineen kulki koko ajan perässä. Koehenkilökato olisi ollut harmillinen juttu tutkimukselle.

Toisaalta ohjelman vaatimukset vuorovaikutukseen sen kanssa heikensivät myös merkittävästi tuloksia. Mitä enemmän ruutua piti tuijottaa, sitä vähemmän jäi huomiokykyä ympäristölle. Mielenkiintoista tutkimuksessa oli myös ihmisten omat oletukset. Ennen tehtävän aloitusta suurin osa piti reittiä helppona, mutta lopulta yli kolmannes tutkituista terveistä aikuisista teki paluusuunnistuksessa virheitä.

Vielä on navigaattoreissa siis parantamisen varaa. Sen sijaan, että ne sanovat “käänny vasemmalle” olisi parempi versio sellainen, joka sanoisi, että “kohta tuosta kioskin kohdalta käänny kohti kauempana näkyvää kirkkoa … Huomasitko, että käännyit äsken vasemmalle”. Näin navigaattori auttaisi meitä tietämään, missä olemme, löytämään reitin ja tarkkailemaan samalla ympäristöämme – ja ehkä löytämään takaisinkin, jos akku loppuu. Nyt kun navigaattorit eivät vielä sitä tee, niin on hyvä muistaa tehdä sitä itse –tietoisesti ja tavoitteellisesti.

Älä hukkaa itseäsi navigaattoriin. Reitin miettiminen kulkiessa on myös hyvää spatiaalisten taitojen harjoittelua. Saatat siinä samalla huomata ja löytää ympäristöstäsi jotain uutta ja mielenkiintoista. Tai jotain kaunista, joka lepuuttaa mieltä.

Kuva: jutussa kuvatun tutkimuksen kuvitusta. Koehenkilöllä navigaattori tabletissa ja silmäliikkeitä mittaavat lasit.

Viitteet

Brügger, A., Richter, K. F., & Fabrikant, S. I. (2019). How does navigation system behavior influence human behavior?. Cognitive research: principles and implications, 4(1), 5.




Hahmottamisen harjoittelu parantaa matikkaa –varsinkin tytöillä.

Suomi mainittu!

STEM-lyhenteellä tarkoitetaan matemaattis-teknillisiä aloja ja insinööritieteitä (Science, Technology, Engineering, Mathematics). Hahmottamisen ja STEM-taidoilla on toistuvasti tutkimuksin todettu olevan vahva yhteys toisiinsa. Mitä paremmin hahmotat avaruudellisia suhteita, sitä helpompaa on matematiikan ja luonnontieteiden oppiminen sinulle.

USAssa onkin jo parikymmentä vuotta tarjottu joissain yliopistoissa hahmotustaitojen kehittämiseen kursseja. Erityisen hyödyllisiksi nämä ovat osoittautuneet insinööritieteitä opiskeleville naisille. Todettua kun on, että pojat pärjäävät yleensä tyttöjä paremmin avaruudellisissa tehtävissä ja pojat ovat massiivisesti yliedustettuna STEM-aloilla.

Uudessa tutkimuksessaan Sorby ja Veurink (2019) liittivät 7. luokan opintoihin avaruudellisia (3D)-suhteita harjoittavan kurssin. Kaksi vuotta myöhemmin kurssin käyneitä verrattiin kontrolleihin. Kurssin käyneillä 9. luokan matematiikka sujui paremmin ja kansallisen kokeen matematiikan tulokset olivat parempia. Erityisesti tulokset olivat parantuneet tytöillä. Tulokset olivat hyvin yhdenmukaisia aikaisempien, eri kouluiässä tehtyjen tutkimustulosten kanssa.

Näyttäisi, että hahmottamisen taidot olisivat keskeisessä roolissa siinä, miksi pojat valitsevat STEM-aloja ja tytöt muita aloja. Tähän lääkkeeksi saattaisi käydä 3D-hahmottamisen järjestelmällinen harjoittelu jo kouluiässä. Sellaisesta harjoittelusta näyttäisivät eritoten tytöt hyötyvän.

Niin paitsi että se Suomi!

Stoet ja Geary (2018) tarkastelivat lähes puolen miljoonan osallistujan PISA-aineiston avulla kysymystä STEM-aloille valikoitumisesta. He törmäsivät tasa-arvoparadoksiin: Mitä tasa-arvoisempi yhteiskunta, sitä isommat olivat erot sukupuolten välillä STEM-aloille suuntautumisessa. 

He nostivat Suomen yhdeksi tyyppiesimerkiksi tästä paradoksista. Suomi on maailman tasa-arvoisin maa, toteavat Stoet ja Geary (2018), jossa tytöt ovat poikia parempia myös luonnontieteissä. Mutta erinomaisesta osaamisestaan huolimatta suomalaiset tytöt olivat myös vähiten kiinnostuneita STEM-opinnoista. Miksi?

He laskivat jokaiselle osallistujalle yhteispisteet matematiikasta, luonnontieteistä ja lukutaidosta. Seuraavaksi he vertasivat yhteispisteitä yksittäisiin aineisiin. Pojilla STEM-pisteet olivat yleensä paremmat kuin yhteispisteet ja tytöillä taas lukemispisteet isompia kuin yhteispisteet. Tämä auttaisi selittämään, miksi pojat valitsevat STEM-aloja ja tytöt suuntautuvat kielellisemmin. Stoet ja Geary (2019) toteavat syyksi sen, että koska tytöt ovat vielä parempia lukemisessa kuin hyväksi todetuissa STEM-taidoissaan, niin se, missä olet parempi, ohjaa kiinnostuksen kohteitasi. Tämä näytti hyvin pätevän suomalaisiin tuloksiin.

Nyt odotamme, mistä löytyvät ne ensimmäiset ennakkoluulottomat koulut, jotka ottavat opinto-ohjelmiinsa avaruudellisen hahmottamisen kurssit. Nostamalla tyttöjen 3D-hahmottamisen ja STEM-taidot samalle tasolle jo hyvien lukutaitojen kanssa heille avautuu usko laajempiin alanvalintavaihtoehtoihin. “Olen tosi hyvä tässäkin” -ajattelu voi olla avain sukupuoliseen monipuolistumiseen teekkarikampuksilla. Ja kuten tiedämme, hahmottamisen harjoittelusta ei ole mitään haittaa pojillekaan –päin vastoin.

Viitteet

Sorby, S. A., & Veurink, N. (2019). Preparing for STEM: Impact of Spatial Visualization Training on Middle School Math Performance. Journal of Women and Minorities in Science and Engineering, 25(1).

Stoet, G., & Geary, D. C. (2018). The gender-equality paradox in science, technology, engineering, and mathematics education. Psychological science, 29(4), 581-593.

Miten opimme ajattelemaan matemaattisesti?

Tätä kysymystä pohti kanadalainen Brain and Mind Institutin porukka (Hawes ym. 2019) tutkiessaan 4–11 -vuotiaiden lasten lukukäsite-, hahmotus- ja toiminnanohjauksellisten taitojen yhteyksiä matemaattisiin taitoihin (matemaattinen ja geometrinen päättely).

He tekivät näiden taitojen mittareiden välille ns. latenttien faktoreiden analyysin. Latentti tarkoittaa piilossa olevaa, mutta yksikertaistettuna kuvaten: he etsivät isosta mittarimäärästä niitä tehtäväryppäitä, jotka selittäisivät parhaiten eri mittareiden välillä olevia yhteyksiä toisiinsa.

Kaikki kolme, lukukäsite-, hahmotus- ja toiminnanohjaukselliset taidot ovat yhteydessä toisiinsa, mutta ainoastaan hahmottaminen ja lukukäsite selittivät matemaattisia taitoja. Tutkijat tarkastelivat vielä, voisiko toiminnanohjaus toimia jotenkin välittävänä tekijänä matemaattisten taitojen kehitykselle, mutta tälle mallille ei aineisto antanut tukea.

Tutkimus korostaa entisestään hahmottamisen taitojen keskeisyyttä matemaattisen ajattelun kehitykselle. Toiminnanohjauksellisten taitojen vähäisempi rooli matemaattisten tehtävien ratkaisuun oli yllätys, koska se on kuitenkin vahvassa yhteydessä hahmottamiseen ja lukukäsitteeseen. Tämä tulos osoittaa, että hahmottaminen ja toiminnanohjaus, vaikka ovatkin läheisessä suhteessa toisiinsa, ovat selkeästi erillisiä “piilossa olevia” tekijöitä taitojen kehityksen taustalla.

Viitteet

Hawes, Z., Moss, J., Caswell, B., Seo, J., & Ansari, D. (2019). Relations between numerical, spatial, and executive function skills and mathematics achievement: A latent-variable approach. Cognitive Psychology, 109, 68-90.

—-
Samainen Western Universityn ryhmä on julkaissut osan testitehtävistään myös vapaaseen käyttöön (http://www.numeracyscreener.org). Kyseisen nopean (1-2 min) lukukäsitettä mittaavan tehtävän voi kuka tahansa ladata netistä. Sivustolla on ohjeet ja laskukone tulosten vertaamiseksi kanadalaisiin normeihin.

(PS. Pyynnöstä voi Niilo Mäki Instituutista saada tämän lukukäsitetestiin ohjeistukset espanjaksi ja viitearvotietoja meksikolaisilta ekaluokkalaisilta, jos jollakulla sellaiselle nyt sattuu olemaan tarve. Ja jos tarve on taco-chilin polttava, niin voimmehan kääntää ne myös suomeksi).

Hahmottamisen taito yhdistää lukumääräisyyden lukusanoihin

Lukumääräisyyden tajulla tarkoitetaan kykyä hahmottaa lukumääräisyyttä ilman, että sitä tarvitsee laskea. Oheisen kuvion kahdesta esimerkistä pystymme hahmottamaan kummalla puolella on enemmän pisteitä – laskematta ja tietämättä tarkasti kuinka monta niitä oikeastaan on.

Lukumääräisyyden taju näyttäisi olevan myötäsyntyinen taito. Se löytyy vauvoista vaareihin kuten myös elämiltä. Siksi sen on ajateltu olevan yksi matemaattisen ajattelumme perustoista. Se ei näyttäisi edellyttävän lainkaan kielellisiä taitoja.

Lonnemann ja kumppanit (2019) halusivat selvittää, missä määrin tämä lukumäärisyyden taju on yhteydessä kielellisen matematiikan kehitykseen lapsilla (4–6 -vuotiaat, n=156).

He esittivät oletuksen, että visuo-spatiaaliset taidot toimisivat tässä välittävänä tekijänä. Lukumääräisyyden hahmottaminen tukeutuu osin visuo-spatiaalisiin taitoihin, mutta myös määrien kielellinen esitys (yksi, kaksi, kolme…) linkittyy ainakin jo kouluiässä osittain tilaan sijoittuvaan mielikuvaan lukujonosta. Pienemmän luvut yleensä vasemmalla, oikealle päin kasvaen.

Oletus sai vahvaa tukea tuloksista. Lukumääräisyyden tajun ja lukujonotaitojen väliset yhteydet selittyivät täysin visuo-spatiaalisilla taidoilla. Toki yksilöllisestä vaihtelusta näissä taidoissa malli selitti vain osan. Tutkittavaa taitojen kehitykseen vaikuttavista tekijöistä riittää jatkossakin.

Viitteet

Lonnemann, J., Müller, C., Büttner, G., & Hasselhorn, M. (2019). The influence of visual–spatial skills on the association between processing of nonsymbolic numerical magnitude and number word sequence skills. Journal of experimental child psychology, 178, 184-197.